Question Number	Acceptable Answers	Mark
$\mathbf{1 (a) (i)}$	Energy $=$ power \times time Or power $=\frac{\text { energy }}{\text { time }}$ Or see 4.2×0.4	(1)
Energy $=1.7(\mathrm{~J})$	(1)	$\mathbf{2}$
Example of calculation Energy $=4.2 \mathrm{~W} \times 0.4 \mathrm{~s}$ Energy $=1.68(\mathrm{~J})$		

Question Number	Acceptable Answers	Mark
$\mathbf{1 (a) (i i) ~}$	Use of $E_{k}=1 / 2 \mathrm{mv}^{2}$	(1)
	$v=5.9 / 6.0 \mathrm{~ms}^{-1}$ (ecf)	(1)
Example of calculation		
	$v=\sqrt{\frac{2 \times 1.68 \mathrm{~J}}{0.095 \mathrm{~kg}}}$	
	$v=5.9 \mathrm{~m} \mathrm{~s}^{-1}$	

Question Number	Acceptable Answers	Mark
$\mathbf{1 (a) (i i i) ~}$	Energy is dissipated to heat Or work is done against friction Or not all the energy becomes kinetic energy Or air resistance on car Or friction between car/wheels/pin and track Or resistance in motor	(1)

Question Number	Acceptable Answers	Mark
$\mathbf{1 (b)}$	No resultant force is acting on the car (do not credit use of external force) (Car) continues moving: in a straight line Or in same direction Or with same velocity.	$\mathbf{2}$
	Total for question 14	$\mathbf{7}$

Question Number	Acceptable Answers		Mark
2(a)	Laminar: Continuous lines, not crossing, below the wing, with at least 2 continuing beyond the wing Turbulent: swirls, crossing lines, changes of direction greater than 90° only above the wing, not necessarily attached to the lines from the left	(1) (1)	2
Question Number	Acceptable Answers		Mark
2(b)(i)	The idea that a (component of) lift = weight See $L \cos 20^{\circ}$ or $m g / \cos 20^{\circ}$ $L=0.66 \text { or } 0.7(\mathrm{~N})$ Example of calculation Vertical component of lift = weight $L \cos 20^{\circ}=0.063 \mathrm{~kg} \times 9.81 \mathrm{~N} \mathrm{~kg}^{-1}$ $L=0.66(\mathrm{~N})$	(1) (1) (1)	3

Question Number	Acceptable Answers		Mark
2(b)(ii)	Find the horizontal component of lift (drag) using trig or Pythagoras $\left(L \sin 20^{\circ}, W \tan 20^{\circ}, \sqrt{L^{2}-W^{2}}\right)$ Use of $F=m a$ Acceleration $=(-) 3.6$ to $3.7 \mathrm{~m} \mathrm{~s}^{-2} \quad(\mathrm{ecf})$ Example of calculation $\begin{aligned} & L_{\text {horizontal }}=-L \sin 20=-0.66 \mathrm{~N} \times \sin 20=-0.226(\mathrm{~N}) \\ & \text { acceleration }=\frac{-0.226 \mathrm{~N}}{0.063 \mathrm{~kg}} \\ & \text { acceleration }=-3.57 \mathrm{~m} \mathrm{~s}^{-2} \end{aligned}$	(1) (1) (1)	3

Question Number	Acceptable Answers		Mark
2(c)(i)	Bird/leg exerts force/push (down) on ground	(1)	
	N3 ground exerts a force (up) on bird	(1)	
	Force $\neq />$ weight Or there is a resultant/unbalanced force	(1)	4
	Due to $\underline{\text { N2 } / \text { N1 } \text { bird accelerates }}$	(1)	4

Question Number	Acceptable Answers	Mark
2(c)(ii)	Maximum force read from graph $=2.00 \mathrm{~N}$ to 2.10 N	(1)
resultant force $=F-W(1.37 \mathrm{~N}$ to 1.43 N$)$		
Answer $=23 \mathrm{~m} \mathrm{~s}^{-2}$	(1)	
Example of calculation Maximum force $=2.05 \mathrm{~N}$ $2.05 \mathrm{~N}-\left(0.063 \mathrm{~kg} \times 9.81 \mathrm{~m} \mathrm{~s}^{-2}\right)=0.063 \mathrm{~kg} \times a$ $a=22.7 \mathrm{~m} \mathrm{~s}^{-2}$	$\mathbf{(1)}$	$\mathbf{3}$
	Total for question $\mathbf{1 8}$	

Question Number	Answer	Mark
3 (a)	Show that the upthrust is about $8 \times 10^{-4} \mathrm{~N}$ Use of mass $=$ density x volume Correct answer for upthrust $\left(=8.3 \times 10^{-4}(\mathrm{~N})\right)$ Example of calculation mass of liquid displaced $=$ density \times volume $=1300 \mathrm{~kg} \mathrm{~m}^{-3} \times 6.5 \times 10^{-8} \mathrm{~m}^{3}=8.45 \times 10^{-5} \mathrm{~kg}$ upthrust $=8.45 \times 10^{-5} \mathrm{~kg} \times 9.81 \mathrm{~m} \mathrm{~s}^{-2}$ $=8.3 \times 10^{-4} \mathrm{~N}$	(1)
3 (b)	Show that the viscosity of the liquid is about $2 \mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-1}$ Correct summary of forces, e.g. $\mathrm{V}=\mathrm{W}-\mathrm{U}$ Use of $\mathrm{F}=6 \pi \eta \mathrm{rv}$ Correct answer for viscosity ($1.8\left(\mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-1}\right)$) Example of calculation $\begin{aligned} & \text { Viscous drag }=\mathrm{W}-\mathrm{U}=4.8 \times 10^{-3} \mathrm{~N}-8.3 \times 10^{-4} \mathrm{~N}=3.97 \times 10^{-3} \mathrm{~N} \\ & \mathrm{~F}=6 \pi \eta \mathrm{rv} \\ & \eta=3.97 \times 10^{-3} \mathrm{~N} /\left(6 \times \pi \times 4.6 \times 10^{-2} \mathrm{~m} \mathrm{~s}^{-1} \times 2.5 \times 10^{-3} \mathrm{~m}\right) \\ & =1.8 \mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-1} \end{aligned}$ [Watch out for out of clip answers]	(1) (1) (1)
3 (c)	State a relevant variable to control Temperature	(1)
	Total for question 14	6

Question Number	Answer	Mark
4(a)	Explain the meaning of the terms: Ductile - can be made/ drawn into wires / shows significant/ large/ lots of plastic deformation / large plastic region Brittle - shatters when subject to impact / sudden force fails/ breaks/ cracks with little or no plastic deformation / breaks just beyond elastic limit / breaks just beyond limit of proportionality / breaks under stress due to propagation of cracks	(1)
4(b)	Calculate the mass that would produce this load. Use of W = mg Correct answer (3600 kg) Example of calculation	(1)
W $=$ mg m $=35000 ~ \mathrm{~N} / 9.81 ~ \mathrm{~N} \mathrm{~kg}$ =3570 kg	(1)	
Total for question $\mathbf{1 5}$	(1)	

Question Number	Answer	Mark	
$\mathbf{5 (a) (i)}$	(For upward motion) the upthrust > weight (+drag) Or there is a resultant upward force (This is because) greater volume/mass of liquid is displaced (Accept more liquid displaced) Upthrust increases (and mass/weight of wax drop is constant)	(1)	(1)

Question Number	Answer	Mark
6(a) (i)	Show that the resultant upward force at the moment it is released is about 200 N Use of density x volume (1) Use of mass $\mathrm{x} g(\mathbf{1)}$ Correct answer [215 (N) to at least 2 sf] (1) [no ue] Example of calculation Mass of displaced air $=$ density x volume $=1.2 \mathrm{~kg} \mathrm{~m}^{-3} \times 2830 \mathrm{~m}^{3}=3396 \mathrm{~kg}$ upthrust $=$ weight of displaced air $=3396 \mathrm{~kg} \times 9.81 \mathrm{~N} \mathrm{~kg}^{-1}=33315 \mathrm{~N}$ resultant force $=33315 \mathrm{~N}-33100 \mathrm{~N}$ $=215 \mathrm{~N}$ [If candidate starts from difference in densities, apply mark scheme in the same way.]	(3)
6(a) (ii)	Find the initial upward acceleration Use of $F=m a(\mathbf{1})$ Correct answer $\left[0.06 \mathrm{~m} \mathrm{~s}^{-2}\right]$ (1) Example of calculation $\begin{aligned} & F=m a \\ & a=215 \mathrm{~N} / 3370 \mathrm{~kg} \\ & =0.064 \mathrm{~m} \mathrm{~s}^{-2} \end{aligned}$ [Use of 200 N gives $0.059 \mathrm{~m} \mathrm{~s}^{-2}$]	(2)
6(a) (iii)	Justify that effect of air resistance is negligible Use of Stokes' law equation, $F=6 \pi \eta r v(1)$ Find viscous drag ($6.0 \times 10^{-3}(\mathrm{~N})$) (1) (no ue) Relevant comment, e.g. very small in comparison to other forces (not just "small")/ much smaller than other forces (not just smaller) (1) Example of calculation $\begin{aligned} & F=6 \pi \eta r v \\ & F=6 \times \pi \times 1.8 \times 10^{-5} \mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-1} \times 8.8 \mathrm{~m} \times 2 \mathrm{~m} \mathrm{~s}^{-1} \\ & =6.0 \times 10^{-3} \mathrm{~N} \end{aligned}$ This is very much less than upthrust and so is negligible	(3)
6(b) Physics	Add labelled arrows Correctly show weight (W, mg), upthrust (U), and viscous drag /drag/friction/air resistance (V, F, D) 3 correct $=2$, 2 correct $=1$ [4 labels, max 1 for 3 correct forces, zero for 2 correct forces, 5 labels or more $=$ zero $]$ [Forces do not need to be co-linear. Accept two correct labels on the nsthlartlasidutorAcetept buoyancy force for upthrust]	max (2)

	[Do not accept 'gravity']	
$\mathbf{6 (c)}$	Explain why this density change limits the height to which the balloon will rise. Mass/weight of displaced air decreases / upthrust decreases / density of air in balloon eventually equals density of surrounding air [accept density greater than surrounding air] (1)	(2) Net upward force would decrease / no resultant upward force / no more upwards acceleration (1)

Question Number	Answer	Mark
7(a)	Calculate the resistive forces State component of $\mathrm{T}=\mathrm{T} \cos \theta(1)$ Correct answer [1120 N] (1) Example of calculation $\begin{aligned} & \mathrm{T}=\mathrm{T} \cos \theta \\ & =1150 \mathrm{~N} \times \cos 12^{\circ} \\ & =1125 \mathrm{~N} \end{aligned}$ Therefore resistive forces $=1125 \mathrm{~N}$	2
7(b)	Calculate the work done on the boat by the horse Use of $\Delta W=F \Delta s$ (1) Correct answer [558 000 J] (1) [ecf] Example of calculation $\begin{aligned} & \Delta \mathrm{W}=\mathrm{F} \Delta \mathrm{~s} \\ & =1125 \mathrm{~N} \times 500 \mathrm{~m} \\ & =560000 \mathrm{~J} \end{aligned}$	2
7(c)	Explain using a longer rope Longer rope \rightarrow smaller angle (1) cos theta then larger / need smaller force (for same component acting on boat) (1)	2
	Total for question	6

