Question Number	Acceptable Answers		Mark
1(a)(i)	energy		
-(0)(-)	Energy = power × time Or power = $\frac{\text{energy}}{\text{time}}$ Or see 4.2×0.4	(1)	
	Energy = $1.7 (J)$	(1)	2
	$\frac{\text{Example of calculation}}{\text{Energy} = 4.2 \text{ W} \times 0.4 \text{ s}}$ $\text{Energy} = 1.68 \text{ (J)}$		

Question Number	Acceptable Answers		Mark
1(a)(ii)	Use of $E_k = \frac{1}{2} mv^2$ (1)	
	$v = 5.9 / 6.0 \text{ ms}^{-1} \text{ (ecf)}$ (1	l)	2
	Example of calculation		
	$v = \sqrt{\frac{2 \times 1.68 \mathrm{J}}{0.095 \mathrm{kg}}}$		
	$v = 5.9 \text{ m s}^{-1}$		

Question	Acceptable Answers	Mark
Number		
1(a)(iii)	Energy is dissipated to heat	
	Or work is done against friction	
	Or not all the energy becomes kinetic energy	
	Or air resistance on car	
	Or friction between car/wheels/pin and track	1
	Or resistance in motor (1)	

Question Number	Acceptable Answers		Mark
1(b)	No resultant force is acting on the car(1)(do not credit use of external force)		
	(Car) continues moving: in a straight line Or in same direction Or with same velocity.	(1)	2
	Total for question 14		7

Question Number	Acceptable Answers		Mark
2(a)	Laminar : Continuous lines, not crossing, below the wing, with at least 2 continuing beyond the wing	(1)	
	Turbulent: swirls, crossing lines, changes of direction greater than 90° only above the wing, not necessarily attached to the lines from the left	(1)	2

Question	Acceptable Answers	Mark
Number		
2(b)(i)	The idea that a (component of) lift = weight (1)	
	See $L \cos 20^\circ$ or $mg / \cos 20^\circ$ (1)	
	L = 0.66 or 0.7 (N) (1)	3
	Example of calculation Vertical component of lift = weight $L\cos 20^\circ = 0.063 \text{ kg} \times 9.81 \text{ N kg}^{-1}$ L = 0.66 (N)	

Question Number	Acceptable Answers		Mark
2(b)(ii)	Find the horizontal component of lift (drag) using trig or Pythagoras $(L \sin 20^\circ, W \tan 20^\circ, \sqrt{L^2 - W^2})$	(1)	
	Use of $F = ma$	(1)	
	Acceleration = (-) 3.6 to 3.7 m s ⁻² (ecf)	(1)	3
	$\frac{\text{Example of calculation}}{L_{\text{horizontal}} = -L\sin 20} = -0.66 \text{ N} \times \sin 20 = -0.226 \text{ (N)}$ $\text{acceleration} = \frac{-0.226 \text{ N}}{0.063 \text{ kg}}$ $\text{acceleration} = -3.57 \text{ m s}^{-2}$		

uestion umber	Mark
(c)(i)	
	4

Question Number	Acceptable Answers		Mark
2(c)(ii)	Maximum force read from graph = 2.00 N to 2.10 N	(1)	
	resultant force = $F - W$ (1.37 N to 1.43 N)	(1)	
	Answer = 23 m s ^{-2}	(1)	3
	Example of calculation Maximum force = 2.05 N 2.05 N - (0.063 kg x 9.81 m s ⁻²) = 0.063 kg × a $a = 22.7 m s^{-2}$		
	Total for question 18		15

Question	Answer	Mark
Number		
3 (a)	Show that the upthrust is about 8 x 10 ⁻⁴ N	
	Use of mass = density x volume	(1)
	Correct answer for upthrust (= 8.3 x 10 ⁻⁴ (N))	(1)
	Example of calculation	
	mass of liquid displaced = density x volume	
	= 1300 kg m ⁻³ x 6.5 x 10 ⁻⁸ m ³ = 8.45 x 10 ⁻⁵ kg	
	upthrust = 8.45 x 10 ⁻⁵ kg x 9.81 m s ⁻²	
	$= 8.3 \times 10^{-4} N$	
3 (b)	Show that the viscosity of the liquid is about 2 kg m ⁻¹ s ⁻¹	
	Correct summary of forces, e.g. V = W - U	(1)
	Use of $F = 6\pi\eta rv$	(1)
	Correct answer for viscosity (1.8 (kg m ⁻¹ s ⁻¹))	(1)
	Example of calculation	
	Viscous drag = W - U = $4.8 \times 10^{-3} \text{ N} - 8.3 \times 10^{-4} \text{ N} = 3.97 \times 10^{-3} \text{ N}$	
	$F = 6\pi\eta rv$	
	$\eta = 3.97 \times 10^{-3} \text{ N} / (6 \times \pi \times 4.6 \times 10^{-2} \text{ m s}^{-1} \times 2.5 \times 10^{-3} \text{ m})$	
	$= 1.8 \text{ kg m}^{-1} \text{ s}^{-1}$	
	[Watch out for out of clip answers]	
3 (c)	State a relevant variable to control	
	<u>Temperature</u>	(1)
	Total for question 14	6

Question Number	Answer	Mark
4(a)	Explain the meaning of the terms:	
	Ductile - can be made/drawn into wires / shows significant/large/lots of plastic deformation / large plastic region	(1)
	Brittle - shatters when subject to impact / sudden force fails/breaks/cracks with little or no plastic deformation / breaks just beyond elastic limit / breaks just beyond limit of proportionality / breaks under stress due to propagation of cracks	(1)
		(1)
4(b)	Calculate the mass that would produce this load.	
	Use of <i>W = mg</i> Correct answer (3600 kg)	(1) (1)
	Example of calculation W = mg	
	$m = 35\ 000\ \text{N}\ /\ 9.81\ \text{N}\ \text{kg}^{-1}$ = 3570 kg	
	Total for question 15	4

Question Number	Answer		Mark
5(a)(i)	(For upward motion) the upthrust > weight (+drag) Or there is a resultant upward force	(1)	
	(This is because) greater volume/mass of liquid is displaced (Accept more liquid displaced)	(1)	
	Upthrust increases (and mass/weight of wax drop is constant)	(1)	3
5(a)(ii)	<u>Upthrust</u> , weight and (viscous) drag identified as the three forces	(1)	
	Correct equation e.g. upthrust = weight + drag Or upthrust - weight $-drag = 0$	(1)	2
5(bb)	(Max 1 for undefined symbols used) her		
3(00)	Temperature decreases Density of drop increases Upthrust reduces	(1) (1) (1)	
	Or Temperature decreases Viscosity (of clear liquid) greater Drag will be greater (at the top)	(1) (1) (1)	3
		(+)	
	Total for question 17		8

Question Number	Answer	Mark
6(a) (i)	Show that the resultant upward force at the moment it is released is about 200 N	
	Use of density x volume (1) Use of mass x g (1)	
	Correct answer [215 (N) to at least 2 sf] (1) [no ue]	(3)
	Example of calculation Mass of displaced air = density x volume = 1.2 kg m ⁻³ x 2830 m ³ = 3396 kg upthrust = weight of displaced air = 3396 kg x 9.81 N kg ⁻¹ = 33 315 N resultant force = 33 315 N - 33 100 N	
	= 215 N [If candidate starts from difference in densities, apply mark scheme in the same way.]	
6(a) (ii)	Find the initial upward acceleration	
	Use of $F = ma$ (1) Correct answer [0.06 m s ⁻²] (1)	
	Example of calculation F = ma a = 215 N / 3370 kg $= 0.064 \text{ m s}^{-2}$	(2)
6(a)	[Use of 200 N gives 0.059 m s ⁻²] Justify that effect of air resistance is negligible	
(iii)	Use of Stokes' law equation, $F = 6\pi\eta rv$ (1) Find viscous drag (6.0 x 10 ⁻³ (N)) (1) (no ue) Relevant comment, e.g. very small in comparison to other forces (not just "small")/ much smaller than other forces (not just smaller) (1) <u>Example of calculation</u> $F = 6\pi\eta rv$ $F = 6 \times \pi \times 1.8 \times 10^{-5} \text{ kg m}^{-1} \text{ s}^{-1} \times 8.8 \text{ m x 2 m s}^{-1}$ $= 6.0 \times 10^{-3} \text{ N}$ This is very much less than upthrust and so is negligible	(3)
6(b) PhysicsA	Add labelled arrows Correctly show weight (W, mg), upthrust (U), and viscous drag /drag/friction/air resistance (V, F, D) 3 correct = 2, 2 correct = 1 [4 labels, max 1 for 3 correct forces, zero for 2 correct forces, 5 labels or more = zero] [Forces do not need to be co-linear. Accept two correct labels on the relMatharTukorAccept buoyancy force for upthrust]	max (2)

	[Do not accept 'gravity']	
	Eveloin why this density shares limits the beight to which the balloon	
6(c)	Explain why this density change limits the height to which the balloon will rise.	
	Mass/weight of displaced air decreases / upthrust decreases / density of air in balloon eventually equals density of surrounding air [accept density greater than surrounding air] (1)	
		(2)
	Net upward force would decrease / no resultant upward force / no more upwards acceleration (1)	
	Total for question	12

Question	Answer	Mark
Number		
7(a)	Calculate the resistive forces	
	State component of $T = T \cos \theta(1)$	
	Correct answer [1120 N] (1)	2
		2
	Example of calculation	
	$T = T \cos \theta$	
	= 1150 N x cos 12°	
	= 1125 N	
	Therefore resistive forces = 1125 N	
7 (b)	Calculate the work done on the boat by the horse	
	Use of $\Delta W = F \Delta s$ (1)	
	Correct answer [558 000 J] (1) [ecf]	2
		_
	Example of calculation	
	$\Delta W = F \Delta s$	
	= 1125 N x 500 m	
	=560 000 J	
7 (c)	Explain using a longer rope	
	Longer rope \rightarrow smaller angle (1)	
	cos theta then larger / need smaller force (for same component acting on boat) (1)	2
	Total for question	6
		0